# On the centralization of the circumcentered-reflection method

Luiz-Rafael Santos (UFSC/Blumenau)

In this talk we consider the first circumcenter iteration scheme that does not employ a product space reformulation for finding a point in the intersection of two closed convex sets. We introduce a so-called centralized version of the circumcentered-reflection method (CRM). Developed with the aim of accelerating classical projection algorithms, CRM is successful for tracking a common point of a finite number of affine sets. In the case of general convex sets, CRM was shown to possibly diverge if Pierra’s product space reformulation is not used. In this work, we prove that there exists an easily reachable region consisting of what we refer to as centralized points, where pure circumcenter steps possess properties yielding convergence. The resulting algorithm is called centralized CRM (cCRM). In addition to having global convergence, cCRM converges linearly under an error bound condition and shows superlinear behavior in some numerical experiments.